Specific Cre/Lox recombination in the mouse proximal tubule.
نویسندگان
چکیده
The present work reports for the first time the construction of a transgenic mouse strain with specific expression of Cre recombinase in the kidney proximal tubule. A Cre/loxP strategy was developed using sglt2 promoter to drive Cre recombinase expression in transgenic mice. The mouse sglt2 5' region consisting of the first exon, the first intron, and part of the second exon was cloned upstream of a nucleotide sequence encoding the Cre recombinase. Transgenic mice were generated by pronuclear injection, and tissue specificity of Cre expression was analyzed using reverse transcription-PCR. The iL1-sglt2-Cre mouse line scored positive for kidney transcription of Cre but not for the other tissues analyzed. Within the kidney, Cre transcripts were demonstrated to be restricted to the proximal tubule only. iL1-sglt2-Cre mice were bred with ROSA26-LacZ reporter mice that contained a loxP-flanked stop sequence upstream of the LacZ gene. X-gal staining and immunohistochemistry using specific antibodies (anti-megalin, anti-Tamm-Horsfall, anti-NaCl co-transporter, and anti-aquaporin 2) revealed that sglt2 drives Cre functional expression specifically in proximal tubules. The iL1-sglt2-Cre mouse therefore represents a powerful tool for Cre-LoxP-mediated conditional expression in the renal proximal tubule.
منابع مشابه
Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1.
The Cre protein encoded by the coliphage P1 is a 38-kDa protein that efficiently promotes both intra- and intermolecular synapsis and recombination of DNA both in Escherichia coli and in vitro. Recombination occurs at a specific site, called lox, and does not require any other protein factors. The Cre protein is shown here also to be able to cause synapsis of DNA and site-specific recombination...
متن کاملComparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells
BACKGROUND Cre-mediated site-specific integrative recombination in mouse embryonic stem (ES) cells is a useful tool for genome engineering, allowing precise and repeated site-specific integration. To promote the integrative reaction, a left element/right element (LE/RE) mutant strategy using a pair of lox sites with mutations in the LE or RE of the lox sequence has previously been developed. Re...
متن کاملMouse model of proximal tubule endocytic dysfunction.
BACKGROUND Several studies have indicated the central role of the megalin/cubilin multiligand endocytic receptor complex in protein reabsorption in the kidney proximal tubule. However, the poor viability of the existing megalin-deficient mice precludes further studies and comparison of homogeneous groups of mice. METHODS Megalin- and/or cubilin-deficient mice were generated using a conditiona...
متن کاملCre recombinase-mediated site-specific recombination between plant chromosomes.
We report the use of the bacteriophage P1 Cre-lox system for generating conservative site-specific recombination between tobacco chromosomes. Two constructs, one containing a promoterless hygromycin-resistance gene preceded by a lox site (lox-hpt) and the other containing a cauliflower mosaic virus 35S promoter linked to a lox sequence and the cre coding region (35S-lox-cre), were introduced se...
متن کاملCre-mediated somatic site-specific recombination in mice.
Conditional mutant mice equipped with heterologous recombination systems (Cre/lox or Flp/frt) are promising for studying tissue-specific gene function and for designing better models of human diseases. The utility of these mice depends on the cell target specificity, on the efficiency and on the control over timing of gene (in)activation. We have explored the utility of adenoviral vectors and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 15 8 شماره
صفحات -
تاریخ انتشار 2004